Share
array:24 [ "pii" => "S2254887421001053" "issn" => "22548874" "doi" => "10.1016/j.rceng.2020.12.008" "estado" => "S300" "fechaPublicacion" => "2021-12-01" "aid" => "1938" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2021;221:561-8" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0014256521000151" "issn" => "00142565" "doi" => "10.1016/j.rce.2020.12.008" "estado" => "S300" "fechaPublicacion" => "2021-12-01" "aid" => "1938" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2021;221:561-8" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "Validación externa de las ecuaciones europea y americana para el cálculo del riesgo cardiovascular en población laboral española" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "561" "paginaFinal" => "568" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "External validation of the European and American equations for calculating cardiovascular risk in a Spanish working population" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2524 "Ancho" => 2750 "Tamanyo" => 348937 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Distribución de las estimaciones y curva ROC según cada una de las calculadoras en función del riesgo observado.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "I. Moral Peláez, C. Brotons Cuixart, D. Fernández Valverde, M. Puig Palma, E. Calvo Bonacho, P. Martínez Muñoz, C. Catalina Romero, L.J. Quevedo Aguado" "autores" => array:8 [ 0 => array:2 [ "nombre" => "I." "apellidos" => "Moral Peláez" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Brotons Cuixart" ] 2 => array:2 [ "nombre" => "D." "apellidos" => "Fernández Valverde" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Puig Palma" ] 4 => array:2 [ "nombre" => "E." "apellidos" => "Calvo Bonacho" ] 5 => array:2 [ "nombre" => "P." "apellidos" => "Martínez Muñoz" ] 6 => array:2 [ "nombre" => "C." "apellidos" => "Catalina Romero" ] 7 => array:2 [ "nombre" => "L.J." "apellidos" => "Quevedo Aguado" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2254887421001053" "doi" => "10.1016/j.rceng.2020.12.008" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887421001053?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256521000151?idApp=WRCEE" "url" => "/00142565/0000022100000010/v1_202111270634/S0014256521000151/v1_202111270634/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2254887421001235" "issn" => "22548874" "doi" => "10.1016/j.rceng.2021.01.008" "estado" => "S300" "fechaPublicacion" => "2021-12-01" "aid" => "1948" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Clin Esp. 2021;221:569-75" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Adherence to the Mediterranean diet in health personnel from the province of Las Palmas" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "569" "paginaFinal" => "575" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Cumplimiento de la dieta mediterránea en el personal sanitario de la provincia de Las Palmas" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 989 "Ancho" => 2044 "Tamanyo" => 71375 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Relationship between adherence to the Mediterranean diet and the various professional categories.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "S. González-Sosa, J.J. Ruiz-Hernández, S. Domínguez-Rivero, E. Águila-Fernández, D. Godoy-Díaz, S. Santana-Báez, A. Puente-Fernández, A. Conde-Martel" "autores" => array:8 [ 0 => array:2 [ "nombre" => "S." "apellidos" => "González-Sosa" ] 1 => array:2 [ "nombre" => "J.J." "apellidos" => "Ruiz-Hernández" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "Domínguez-Rivero" ] 3 => array:2 [ "nombre" => "E." "apellidos" => "Águila-Fernández" ] 4 => array:2 [ "nombre" => "D." "apellidos" => "Godoy-Díaz" ] 5 => array:2 [ "nombre" => "S." "apellidos" => "Santana-Báez" ] 6 => array:2 [ "nombre" => "A." "apellidos" => "Puente-Fernández" ] 7 => array:2 [ "nombre" => "A." "apellidos" => "Conde-Martel" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0014256521000680" "doi" => "10.1016/j.rce.2021.01.006" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256521000680?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887421001235?idApp=WRCEE" "url" => "/22548874/0000022100000010/v1_202111270653/S2254887421001235/v1_202111270653/en/main.assets" ] "asociados" => array:1 [ 0 => array:19 [ "pii" => "S225488742100151X" "issn" => "22548874" "doi" => "10.1016/j.rceng.2021.05.004" "estado" => "S300" "fechaPublicacion" => "2021-12-01" "aid" => "1970" "copyright" => "Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI)" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "edi" "cita" => "Rev Clin Esp. 2021;221:596-7" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>" "titulo" => "Estimation of vascular risk: Time and place matter" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "596" "paginaFinal" => "597" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Estimación del riesgo vascular. El tiempo y el lugar importan" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "J.I. Cuende, C. Guijarro" "autores" => array:2 [ 0 => array:2 [ "nombre" => "J.I." "apellidos" => "Cuende" ] 1 => array:2 [ "nombre" => "C." "apellidos" => "Guijarro" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0014256521001120" "doi" => "10.1016/j.rce.2021.05.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0014256521001120?idApp=WRCEE" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S225488742100151X?idApp=WRCEE" "url" => "/22548874/0000022100000010/v1_202111270653/S225488742100151X/v1_202111270653/en/main.assets" ] ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "External validation of the European and American equations for calculating cardiovascular risk in a Spanish working population" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "561" "paginaFinal" => "568" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "I. Moral Peláez, C. Brotons Cuixart, D. Fernández Valverde, M. Puig Palma, E. Calvo Bonacho, P. Martínez Muñoz, C. Catalina Romero, L.J. Quevedo Aguado" "autores" => array:8 [ 0 => array:4 [ "nombre" => "I." "apellidos" => "Moral Peláez" "email" => array:1 [ 0 => "imoral@eapsardenya.cat" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 1 => array:4 [ "nombre" => "C." "apellidos" => "Brotons Cuixart" "email" => array:1 [ 0 => "cbrotons@eapsardenya.cat" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 2 => array:3 [ "nombre" => "D." "apellidos" => "Fernández Valverde" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Puig Palma" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 4 => array:3 [ "nombre" => "E." "apellidos" => "Calvo Bonacho" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "P." "apellidos" => "Martínez Muñoz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 6 => array:3 [ "nombre" => "C." "apellidos" => "Catalina Romero" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 7 => array:3 [ "nombre" => "L.J." "apellidos" => "Quevedo Aguado" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Unidad de Investigación, Equipo de Atención Primaria Sardenya, Instituto de Investigación Biomédica Sant Pau, Barcelona, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Unidad Docente ACEBA, Barcelona, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Departamento de Proyectos Sanitarios, IBERMUTUA, Madrid, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Validación externa de las ecuaciones europea y americana para el cálculo del riesgo cardiovascular en población laboral española" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2524 "Ancho" => 2750 "Tamanyo" => 348937 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Distribution of estimations and ROC curve according to each of the calculators based on observed risk.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The majority of clinical guidelines on primary prevention of cardiovascular diseases<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1–4</span></a> recommend the use of cardiovascular risk tables for making decisions regarding treatment.</p><p id="par0010" class="elsevierStylePara elsevierViewall">A review of the existing evidence concludes that routinely determining cardiovascular risk in primary prevention is associated with a tendency toward reducing risk factors (blood pressure, cholesterol, and tobacco use), especially in high-risk individuals.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">At present, the most important equations—as they are incorporated into the European and North American guidelines—are the equations of the European SCORE (Systematic Coronary Risk Estimation)<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> project and the equation developed by the American College of Cardiology/American Heart Association (ACC/AHA)<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> called Pooled Cohort Equations (PCE).</p><p id="par0020" class="elsevierStylePara elsevierViewall">The American guidelines on primary prevention of cardiovascular disease recommend calculating cardiovascular risk in adults 40–75 years of age. When risk is borderline (5%–7.5%) or intermediate (7.5%–20%), they recommend treatment with statins if necessary. In high-risk subjects (>20%), they now recommend starting lipid-lowering treatment with the objective of reducing low-density lipoprotein cholesterol (c-LDL) by 50%.<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,2</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall">The European guidelines recommend routine evaluation of cardiovascular risk in primary prevention in subjects over 40 years of age and maintain recommendations to start or evaluate statin treatment based on cardiovascular risk and c-LDL values.<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3,4</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">In a recent systematic review,<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> 9965 references were identified, which included 212 articles that described the development of 363 prediction models. Only 132 of the models were externally validated and of those, measurements of discrimination and calibration were described in just 65% and 58%, respectively. The authors concluded that there is an excess of predictive models and that the utility of the majority of them is uncertain due to methodological limitations. They recommend not developing new models but rather going into further detail in external validations, comparing them one-by-one to existing models and investigating the addition of new markers to improve predictive capacity.</p><p id="par0035" class="elsevierStylePara elsevierViewall">The aim of this study was to evaluate the external validity of the SCORE and PCE equations in the Spanish population.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Materials and methods</span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Design</span><p id="par0040" class="elsevierStylePara elsevierViewall">This work is a descriptive study of a cohort of workers belonging to a national occupational health mutual insurance company. An interview and physical examination were conducted using standardized measurement methods. Weight, height, blood pressure, and the extent to which participants followed health lifestyle habits were recorded and laboratory tests were requested.</p><p id="par0045" class="elsevierStylePara elsevierViewall">For this study, workers between 40 and 65 years of age who were examined between May 1, 2004 and December 31, 2007 and who had no previous cardiovascular disease were selected.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Evaluation of cardiovascular events</span><p id="par0050" class="elsevierStylePara elsevierViewall">New cardiovascular events were recorded during a 13-year period (2004–2017). Morbidity was obtained based on deregistration certificates from the mutual insurance company during this period. Mortality was evaluated until December 31, 2017 and the data were cross-checked with Spain's National Statistics Institute. Whether the subject was deregistered from the occupational mutual insurance company during the study period was also recorded, with this date being the loss-to-follow-up date.</p><p id="par0055" class="elsevierStylePara elsevierViewall">If the participant did not have any events during the study period and was not deregistered from the occupational health mutual insurance company, it was considered that the individual had fully completed follow-up with no events.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The project was approved by the ethics committee of the Institute of Biomedical Research of the Hospital de la Santa Creu i Sant Pau (Barcelona).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Statistical analysis</span><p id="par0065" class="elsevierStylePara elsevierViewall">A descriptive analysis of the main variables was conducted. The stochastic multiple imputation method was carried out for missing values of the main variables using a data augmentation algorithm in an iterative form of the Markov chain Monte Carlo method stratified according to sex.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a> A total of 20 imputations were conducted, which were matched following the Rubin causal model.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> The percentage of imputed values ranged from 0.6% for blood pressure measurements to 6.8% for c-HDL values.</p><p id="par0070" class="elsevierStylePara elsevierViewall">Each participant’s cardiovascular risk was calculated using the SCORE equations for low-risk countries and the American PCE. The SCORE scores for diabetic subjects (European guidelines already consider them to be high-risk) and the PCE scores for subjects on lipid-lowering treatment were excluded from the calculation. The calibration was represented graphically by risk deciles and was statistically analyzed using the goodness of fit test based on the Nam-D’Agostino version<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> of the Hosmer–Lemeshow test<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> for survival data.</p><p id="par0075" class="elsevierStylePara elsevierViewall">For the discrimination of the model, the ROC (Receiver Operating Characteristic) curve was created and area under the curve and Harrell’s C-statistic were calculated. Sensitivity and specificity were calculated for the cut-off points suggested in each of the calculators. In addition, in the case of the PCE, as the change in cut-off point from 7.5%<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> to 20%<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> was very recent, the impact of the change was analyzed, evaluating differences in the model’s sensitivity and specificity for both thresholds as well as the net gain of this reclassification (Net Reclassification Index (NRI))<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> and the net gain of the reclassification calculated for the population.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">To compare the validity of the two equations between themselves, the summary indices suggested by Harrell for flexible calibration curves and indices which quantify the maximum (E<span class="elsevierStyleInf">max</span>) and mean (E<span class="elsevierStyleInf">avg</span>) deviation of the calibration curve from its diagonal were used.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> The Brier score was also calculated in order to jointly evaluate calibration and discrimination for each prognostic model.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">All statistical analyses were conducted using the STATA14 and R 3.4.4 statistical programs.</p></span></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Results</span><p id="par0090" class="elsevierStylePara elsevierViewall">A total of 244,236 subjects between 40 and 65 years of age participated in the study. Of the participants, 24.5% were women and the mean age was 48.10 years (SD 6.26). A total of 42.72% of subjects were smokers and 27.92% habitually consumed alcohol (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0095" class="elsevierStylePara elsevierViewall">The SCORE risk score was able to be calculated in 228,986 participants (93.76%); 6917 (2.83%) subjects were excluded as they were diabetics (86.57% type 2 and the rest type 1). The risk score was calculated according to the ACC/AHA equation in 232,606 participants (95.24%) after excluding 9965 (4.08%) subjects for receiving lipid-lowering treatment. The similarities and differences between the two calculators are shown in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>.</p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Cardiovascular risk according to the SCORE calculator for low-risk countries</span><p id="par0100" class="elsevierStylePara elsevierViewall">Mean risk according to SCORE was 1.70 (SD 1.81) for men and 0.37 (SD 0.53) for women. In total, 5.17% of men and 0.07% of women had a risk between 5% and 9%. Only 0.62% of men had a risk score >10%. The mean time of follow-up was 9.81 years. A total of 1177 events (0.51%) were recorded in the SCORE calculator: 1,113 (0.64%) in men and 64 in women (0.11%).</p><p id="par0105" class="elsevierStylePara elsevierViewall">A systematic overestimation of risk was observed in all risk deciles (<a class="elsevierStyleCrossRef" href="#tbl0015">Table 3</a>) of between 1.62 (decile 1) and 2.71 (decile 2), with a statistically significant Nam-D’Agostino test (<span class="elsevierStyleItalic">p</span> < .001).</p><elsevierMultimedia ident="tbl0015"></elsevierMultimedia><p id="par0110" class="elsevierStylePara elsevierViewall">The Harrell’s C statistic was 0.746 (95% CI 0.733−0.759). The model's ROC curve is shown in <a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0115" class="elsevierStylePara elsevierViewall">When evaluating the sensitivity and specificity using the cut-off point of 5%, the model's sensitivity was 17.59% (95% CI 15.52%–19.87%) and specificity was 95.68% (95% CI 95.59%–95.76%).</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Cardiovascular risk according to the ACC/AHA calculator</span><p id="par0120" class="elsevierStylePara elsevierViewall">The mean risk score according to PCE was 6.98 (SD 5.66) for men and 1.97 (SD 1.96) for women. Of the total, 18.61% of men and 4.77% of women had borderline risk (5%–7.5%), 32.08% of men and 2.10% of women had intermediate risk (7.5%–20%), and 3.34% of men and 0.03% of women had risk ≥20%. The mean time of follow-up was 10.77 years, during which 2330 events were recorded (1%): 2170 (1.24%) in men and 160 (0.28%) in women.</p><p id="par0125" class="elsevierStylePara elsevierViewall">The overestimation of risk was systematic (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), with ratios (<a class="elsevierStyleCrossRef" href="#tbl0020">Table 4</a>) that ranged between 4.19 (decile 7) and 5.30 (decile 4), with a statistically significant Nam-D’Agostino test (<span class="elsevierStyleItalic">p</span> < .001).</p><elsevierMultimedia ident="tbl0020"></elsevierMultimedia><p id="par0130" class="elsevierStylePara elsevierViewall">Harrell's C-statistic was 0.725 (95% CI 0.715−0.734).</p><p id="par0135" class="elsevierStylePara elsevierViewall">When evaluating the cut-off point of 20%, the North American model's sensitivity was 9.06% (95% CI 7.96%–10.29%) and specificity was 97.55% (95% CI 97.48%–97.61%). Using the previous cut-off point of 7.5%, the model's sensitivity was 57.2% (95% CI 55.19%–59.21%) and specificity was 73.2% (95% CI 72.98%–73.34%). Among the changes in the classification, 48.15% of individuals who had an event and 24.38% of the subjects who did not have any events (NRI<span class="elsevierStyleInf">no events</span> = 0.244) decreased in risk category with the new cut-off point (NRI<span class="elsevierStyleInf">events</span> = −0.482). The overall NRI was −0.2377 and overall NRI weighted for the prevalence of events was 0.2365.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Comparison of the calculators’ validity</span><p id="par0140" class="elsevierStylePara elsevierViewall">The SCORE equation had a Brier index of 0.0053, a Harrel E<span class="elsevierStyleInf">max</span> of 0.163, and an E<span class="elsevierStyleInf">avg</span> of 0.009 whereas the PCE had a Brier index of 0.0142, a Harrel E<span class="elsevierStyleInf">max</span> of 0.621, and an E<span class="elsevierStyleInf">avg</span> of 0.047.</p></span></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Discussion</span><p id="par0145" class="elsevierStylePara elsevierViewall">The results of our study clearly demonstrate that the European SCORE and American PCE risk charts overestimate risk in our population. In the analysis performed separately in men and women (data not shown), the conclusions are the same: an overestimation of risk with both calculators.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Baena-Díez et al. published a study which used data from 12 Spanish cohorts<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> with a total of 30,919 participants between 40 and 64 years of age. The authors observed that all SCORE equations available in Spain which were original, included c-HDL, and were calibrated for Spain significantly overestimated cardiovascular mortality observed in the Spanish population by a measure of around nine times for men and three for women.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Another more recent study published by Vega Alonso et al.<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> on a cohort from Castile and León with 1921 individuals between 40 and 74 years of age also observed how SCORE for low-risk countries overestimated risk; it was three times greater than what was observed and this overestimation was more marked among women.</p><p id="par0160" class="elsevierStylePara elsevierViewall">One limitation of the Vega Alonso study—which was recognized by the authors—is the small number of cardiovascular events observed (just 20).<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> In the study by Baena et al., patients who were on lipid-lowering treatment were excluded from the analysis.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> Both studies included diabetic subjects, adjusting the calculated risk by multiplying it by two and by four in the Vega Alonso study and by three and by five in the Baena study for men and women, respectively. The authors’ decision not to exclude diabetic patients is probably due to the fact that the authors of the first work used included the recommendations of cardiovascular prevention guidelines published in 2008 and the authors of the second work included those published in the 2013 guidelines, but these patients were no longer included in the most recent guidelines published in 2016. Novelties contributed by our study are that it excluded diabetic patients, as they are already high-risk patients and the increase in cardiovascular risk is not fully quantified or argued, as well as the validation of the PCE in the Spanish population.</p><p id="par0165" class="elsevierStylePara elsevierViewall">The overestimation of risk with the currently available tables does not only occur with the SCORE, but also with the other tools used nationally and internationally. The investigators of the FRESCO study, which used data from 11 Spanish cohorts, observed that the use of REGICOR in this population overestimated risk in all deciles.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a></p><p id="par0170" class="elsevierStylePara elsevierViewall">A few years after the development of the North American equations, it was demonstrated that they also overestimate risk in the current population.<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a> An overestimation of cardiovascular risk with this calculator of nearly 20% in all risk categories has been described.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> Recently, a meta-analysis has also shown this overestimation and that it is even greater when using the North American calculator in a European population.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a></p><p id="par0175" class="elsevierStylePara elsevierViewall">A systematic review conducted to evaluate the different cardiovascular risk prediction models specifically in women concluded that despite the development of specific models for women, specific factors discovered in recent years had not been included in these models; they still did not recognize the differences between men and women with respect to cardiovascular risk evaluation. There is still room for improvement in this regard.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a></p><p id="par0180" class="elsevierStylePara elsevierViewall">The change in threshold from 7.5% to 20% for categorizing subjects as high-risk followed by the ACC/AHA recommendations leads to a decrease in sensitivity and increase in sensitivity of the PCE and, in general, the net gain obtained through the reclassification is negative. However, as the prevalence of events in very low, the net gain of the reclassification calculated for the population is positive. Therefore, the gain in specificity outweighs the loss in sensitivity when prevalence of disease is taken into account. As these are prognostic, not diagnostic, probabilistic models, it seems more ethical to classify fewer patients as high-risk (with more false negatives) at the expense of having fewer false positives and, consequently, unnecessarily treating fewer patients.</p><p id="par0185" class="elsevierStylePara elsevierViewall">The estimation of cardiovascular risk using the SCORE calculator showed better validation indices than estimation using the PCE. SCORE showed less overestimation; greater sensitivity; and lower Brier, E<span class="elsevierStyleInf">max</span>, and E<span class="elsevierStyleInf">avg</span> scores. Despite its limitations, these findings favor the use of SCORE in Europe and specifically in Spain (in addition to other calibrated tables such as REGICOR<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a> or those based on Spanish cohorts such as the FRESCO<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>) rather than the PCE.</p><p id="par0190" class="elsevierStylePara elsevierViewall">It is evident that in general, all risk equations have a low sensitivity because there are predictive factors that are not taken into account in the risk tables, such as diet, physical exercise, obesity, stress, genetic factors, and more. It is also true that the use of baseline data from the cohort studies that have been used to develop the various models is quite simplistic, as the reality is that all possible predictive factors such as blood pressure, cholesterol, weight, drug treatment, and other non-static factors change over the follow-up period.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a></p><p id="par0195" class="elsevierStylePara elsevierViewall">Another aspect related to the two tables used is that they are not applied to entirely comparable populations: SCORE is not applicable to diabetics and the PCE do not include those on lipid-lowering treatment. However, in our study, the two risk equations were able to be applied to 90% of the population as it was a relatively young population with low percentages of patients with diabetes or lipid-lowering treatment.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Another limitation is that the majority of young adults, even if they present with various risk factors, are never classified as high-risk. In this regard, another line of research that is already yielding results is lifetime cardiovascular risk estimation. In Spain, a model has recently been developed for calculating lifetime cardiovascular risk (IBERLIFERISK)—from 18 to 75 years of age—in the Spanish working population.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a></p><p id="par0205" class="elsevierStylePara elsevierViewall">It would also be interesting to have risk tables for individuals over 65 years of age, the population with the greatest cardiovascular disease burden and the greatest percentage of individuals on antihypertensive and lipid-lowering drug treatment, among others. At present, there are European tables for older patients (SCORE OP) which can be applied to this population and which overall yield a lower cardiovascular risk than if the original SCORE were applied.<a class="elsevierStyleCrossRefs" href="#bib0135"><span class="elsevierStyleSup">27,28</span></a></p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0115">Conclusions</span><p id="par0210" class="elsevierStylePara elsevierViewall">Both the European SCORE tables for low-risk countries and the American PCE tables overestimate risk in the Spanish population, although the former provide better results on the validation indices.</p><p id="par0215" class="elsevierStylePara elsevierViewall">The current cut-off points of the SCORE and the PCE (5%–20%, respectively) have low sensitivity and high specificity.</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0120">Funding</span><p id="par0220" class="elsevierStylePara elsevierViewall">This study was funded with support received from the <span class="elsevierStyleGrantSponsor" id="gs0005">2014 edition of Marató de TV3</span> (<span class="elsevierStyleGrantNumber" refid="gs0005">20150310</span>), aimed at heart disease.</p></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0125">Conflicts of interest</span><p id="par0225" class="elsevierStylePara elsevierViewall">The authors declare that they do not have any conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1616858" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1445012" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1616859" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1445011" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Materials and methods" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Design" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Evaluation of cardiovascular events" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Statistical analysis" ] ] ] 6 => array:3 [ "identificador" => "sec0030" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Cardiovascular risk according to the SCORE calculator for low-risk countries" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "Cardiovascular risk according to the ACC/AHA calculator" ] 2 => array:2 [ "identificador" => "sec0045" "titulo" => "Comparison of the calculators’ validity" ] ] ] 7 => array:2 [ "identificador" => "sec0050" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0055" "titulo" => "Conclusions" ] 9 => array:2 [ "identificador" => "sec0060" "titulo" => "Funding" ] 10 => array:2 [ "identificador" => "sec0065" "titulo" => "Conflicts of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-11-04" "fechaAceptado" => "2020-12-29" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1445012" "palabras" => array:5 [ 0 => "Risk assessment" 1 => "Primary prevention" 2 => "Middle-aged adults" 3 => "Cardiovascular diseases" 4 => "Drug therapy" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1445011" "palabras" => array:5 [ 0 => "Medición del riesgo" 1 => "Prevención primaria" 2 => "Personas de mediana edad" 3 => "Enfermedades cardiovasculares" 4 => "Tratamiento farmacológico" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Introduction and objective</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">This work aims to externally validate the European and American models for calculating cardiovascular risk in the primary prevention.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">This is a cross-sectional study of a nation-wide cohort of individuals who are active in the work force. Workers without a medical history cardiovascular disease who attended occupational health check-ups between 2004 and 2007 were included. They were followed-up on until December 2017.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">A total of 244,236 subjects participated. Of them, 24.5% were women and the mean age was 48.10 years (SD 6.26). According to the European SCORE risk chart, the mean risk was 1.70 (SD 1.81) for men and 0.37 (SD 0.53) for women. According to the North American PCE model, the mean risk was 6.98 (SD 5.66) for men and 1.97 (SD 1.96) for women. A total of 1177 events (0.51%) were registered according to the SCORE tool and 2,330 events (1.00%) were registered according to the PCE tool. The Harrell’s C-statistic was 0.746 for SCORE and 0.725 for PCE. Sensitivity and specificity for the SCORE’S 5% cut-off point were 17.59% (95%CI 15.52%–19.87%) and 95.68% (95%CI 95.59%–95.76%). Sensitivity and specificity for the PCE’s 20% cut-off point were 9.06% (95%CI 7.96%–10.29%) and 97.55% (95%CI 97.48%–97.61%), respectively.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">The European SCORE and North American PCE models overestimate the risk in our population but with an acceptable discrimination. SCORE showed better validity indices than the PCE. The population’s risk is continuously changing; therefore, it is important continue updating the equations to include information on current populations.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Introduction and objective" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objetivo</span><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Validar externamente los modelos europeo y norteamericano de cálculo de riesgo cardiovascular en prevención primaria.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Estudio transversal de una cohorte nacional de población laboralmente activa. Se incluyeron trabajadores sin antecedentes de enfermedad cardiovascular que acudieron a una revisión laboral entre los años 2004 y 2007, y se siguieron hasta 2017.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Participaron 244.236 sujetos. El 24,5% eran mujeres, la edad media se situó en 48,10 años (DE 6,26). El riesgo medio según el modelo europeo SCORE fue de 1,70 (DE 1,81) para hombres y de 0,37 (DE 0,53) para mujeres. Según el modelo norteamericano PCE, el riesgo medio fue de 6,98 (DE 5,66) para hombres y de 1,97 (DE 1,96) para mujeres. Se registró un total de 1.177 eventos (0,51%) considerados en la calculadora SCORE, y un total de 2.330 eventos (1,00%) considerados según las PCE. El estadístico C de Harrell fue de 0,746 (SCORE) y 0,725 (PCE). La sensibilidad y especificidad para el punto de corte del 5% en SCORE fue de 17,59% (IC95% 15,52%–19,87%) y 95,68% (IC95% 95,59%–95,76%) y para el punto de corte del 20% de las PCE de 9,06% (IC95% 7,96%–10,29%) y 97,55% (IC95% 97,48%–97,61%), respectivamente.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Las tablas europeas del SCORE y americanas de las PCE sobreestiman el riesgo en nuestra población, manteniendo una discriminación aceptable. SCORE mostró mejores índices de validez que las PCE. El perfil de riesgo de las poblaciones va cambiando, por lo que es necesario ir actualizando las ecuaciones que incluyan información de poblaciones más contemporáneas.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Moral Peláez I, Brotons Cuixart C, Fernández Valverde D, Puig Palma M, Calvo Bonacho E, Martínez Muñoz P, et al. Validación externa de las ecuaciones europea y americana para el cálculo del riesgo cardiovascular en población laboral española. Rev Clin Esp. 2021;221:561–568.</p>" ] ] "multimedia" => array:5 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2524 "Ancho" => 2750 "Tamanyo" => 348937 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Distribution of estimations and ROC curve according to each of the calculators based on observed risk.</p>" ] ] 1 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">BMI: body mass index; DBP: diastolic blood pressure; DM: diabetes mellitus; HDL: high-density lipoproteins; LDL: low-density lipoproteins; NK/NR: not known/not recorded; SBP: systolic blood pressure; SD: standard deviation.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">n = 244,236 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Men (n = 184,380) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Women (n = 59,856) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Mean age (SD)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48.42 (6.38) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">47.10 (5.75) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " colspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Tobacco use, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Non-smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">53,753 (29.15) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27,381 (45.74) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ex-smoker > 1 year \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">42,476 (23.04) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9709 (16.22) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ex-smoker < 1 year \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5197 (2.82) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1388 (2.32) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">82,954 (44.99) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21,378 (35.72) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " colspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Alcohol consumption, n (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Habitual consumption \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">63,104 (34.22) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5094 (8.51) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Occasional consumption \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">66,863 (36.26) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19,256 (32.17) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ex-consumer \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">536 (0.29) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7 (0.01) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>No consumption \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">50,323 (27.29) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">34,847 (58.22) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>NK/NR \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3554 (1.93) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">652 (1.09) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " colspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Employment type (%)</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Non-manual \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">46,442 (25.19) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28,941 (48.35) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Manual labor \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">137,023 (74.32) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30,590 (51.11) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Unknown \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">915 (0.50) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">325 (0.54) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">BMI (kg/m</span><span class="elsevierStyleSup">2</span><span class="elsevierStyleItalic">), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27.61 (3.97) [n = 182,733] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">25.53 (4.47) [n = 58,993] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Total cholesterol (mg/dL), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">214.46 (37.38) [n = 179,099] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">208.48 (35.09) [n = 57,839] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">LDL cholesterol (mg/dL), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">136.18 (33.36) [n = 169,123] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129.41 (31.52) [n = 55,603] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">HDL cholesterol (mg/dL), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">51.42 (12.51) [n = 171,908] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">61.86 (13.54) [n = 55,633] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Triglycerides (mg/dL), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">139.09 (100.18) [n = 177,484] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">87.21 (49.08) [n = 57,331] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">SBP (mmHg), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">134.39 (17.52) [n = 183,302] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">123.42 (17.08) [n = 59,494] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DBP (mmHg), mean (SD) [n]</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">81.84 (10.87) [n = 183,284] \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">76.34 (10.55) [n = 59,495] \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Antihypertensive treatment, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15,595 (8.46) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3,573 (5.97) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DM 2, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5,345 (2.90) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">643 (1.07) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2756582.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Patients’ baseline characteristics by sex.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">DM: diabetes mellitus; DBP: diastolic blood pressure; HDL: high-density lipoproteins; HT: hypertension; SBP: systolic blood pressure; TC: total cholesterol.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Score \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">ACC/AHA \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Age (years) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40−65 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">40−79 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">SBP (mmHg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">100−180 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">90−200 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DBP (mmHg) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">30−140 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TC (mg/dL) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">105−305 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">130−320 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HDL (mg/dL) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">20−100 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">DM \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">☑ \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">HT treatment \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">☑ \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Smoker \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Yes/No \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Yes/No \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Other variables \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">African–American race \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">n</span> <span class="elsevierStyleBold">=</span> <span class="elsevierStyleBold">244,236</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">228,986</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">232,606</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">Common cases</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleBold">224,422</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2756580.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Description of the characteristics of each cardiovascular risk calculator.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0015" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Risk decile \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">N \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Risk</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Ratio (E/O) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Observed (O) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Estimated (E) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,899 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.05% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.08% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.62 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,900 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.08% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.21% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.71 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,897 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.21% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.35% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.70 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,899 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.23% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.50% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.21 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,898 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.31% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.68% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.17 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,899 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.51% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.90% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.79 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,900 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.58% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.23% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.10 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,897 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.81% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.74% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.14 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,899 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.07% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.63% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.45 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22,898 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.09% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.43% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.59 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2756583.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Proportion of expected and observed events by risk deciles according to the SCORE calculator for low-risk countries.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0020" "etiqueta" => "Table 4" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0025" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Risk decile \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">N \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Risk</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Ratio (E/O) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Observed (O) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Estimated (E) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.12% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.53% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.55 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,253 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.26% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.18% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.58 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.38% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.83% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.88 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,253 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.49% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.58% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.30 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.67% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.50% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5.21 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0.95% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.65% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.89 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,252 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.45% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6.09% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.19 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">8 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1.73% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7.99% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.60 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,254 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">2.23% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10.85% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.87 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">10 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23,252 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3.69% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18.17% \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4.92 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2756581.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Proportion of expected and observed events by risk deciles according to the ACC/AHA calculator (PCE).</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:28 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.M. Grundy" 1 => "N.J. Stone" 2 => "A.L. Bailey" 3 => "C. Beam" 4 => "K.K. Birtcher" 5 => "R.S. Blumenthal" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jacc.2018.11.003" "Revista" => array:5 [ "tituloSerie" => "J Am Coll Cardiol" "fecha" => "2019" "volumen" => "73" "paginaInicial" => "e285" "paginaFinal" => "e350" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.K. Arnett" 1 => "R.S. Blumenthal" 2 => "M.A. Albert" 3 => "A.B. Buroker" 4 => "Z.D. Goldberger" 5 => "E.J. Hahn" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jacc.2019.03.010" "Revista" => array:6 [ "tituloSerie" => "J Am Coll Cardiol" "fecha" => "2019" "volumen" => "74" "paginaInicial" => "e177" "paginaFinal" => "e232" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30894318" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of 10 Societies and by Invited Experts)" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.F. Piepoli" 1 => "A.W. Hoes" 2 => "S. Agewall" 3 => "C. Albus" 4 => "C. Brotons" 5 => "A.L. Catapano" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/eurheartj/ehw106" "Revista" => array:5 [ "tituloSerie" => "Eur Heart J" "fecha" => "2016" "volumen" => "37" "paginaInicial" => "2315" "paginaFinal" => "2381" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comentario del CEIPV a la actualización de las guías europeas de prevención vascular en la práctica clínica" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Armario" 1 => "C. Brotons" 2 => "R. Elosua" 3 => "M. Alonso de Leciñana" 4 => "A. Castrol" 5 => "A. Clarà" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Rev Esp Salud Pública" "fecha" => "2020" "volumen" => "94" "paginaInicial" => "e1" "paginaFinal" => "38" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33095207" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: an overview of systematic reviews" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "K. Studziński" 1 => "T. Tomasik" 2 => "J. Krzysztoń" 3 => "J. Jóźwiak" 4 => "A. Windak" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12872-018-0990-2" "Revista" => array:5 [ "tituloSerie" => "BMC Cardiovasc Disord." "fecha" => "2019" "volumen" => "19" "paginaInicial" => "11" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30626326" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.M. Conroy" 1 => "K. Pyorala" 2 => "A.P. Fitzgerald" 3 => "S. Sans" 4 => "A. Menotti" 5 => "G. De Backer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0195-668x(03)00114-3" "Revista" => array:6 [ "tituloSerie" => "Eur Heart J" "fecha" => "2003" "volumen" => "24" "paginaInicial" => "987" "paginaFinal" => "1003" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12788299" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.C. Goff Jr" 1 => "D.M. Lloyd-Jones" 2 => "G. Bennett" 3 => "S. Coady" 4 => "R.B. D’Agostino Sr" 5 => "R. Gibbons" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/01.cir.0000437741.48606.98" "Revista" => array:7 [ "tituloSerie" => "Circulation" "fecha" => "2014" "volumen" => "129" "numero" => "25 Suppl 2" "paginaInicial" => "S49" "paginaFinal" => "73" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24222018" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prediction models for cardiovascular disease risk in the general population: systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.A.A.G. Damen" 1 => "L. Hooft" 2 => "E. Schuit" 3 => "T.P.A. Debray" 4 => "G.S. Collins" 5 => "I. Tzoulaki" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bmj.i2416" "Revista" => array:5 [ "tituloSerie" => "BMJ" "fecha" => "2016" "volumen" => "353" "paginaInicial" => "i2416" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27184143" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of incomplete multivariate data" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J.L. Schafer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1997" "editorial" => "Chapman & Hall/CRC" "editorialLocalizacion" => "Boca Raton" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Multiple imputation for nonresponse in surveys" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "D.B. Rubin" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "1987" "editorial" => "John Wiley & Sons" "editorialLocalizacion" => "New York" ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Goodness of fit tests for the multiple logistic regression model" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D.W. Hosmer" 1 => "S. Lemeshow" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Commun Stat Theory Methods" "fecha" => "1980" "volumen" => "9" "paginaInicial" => "1043" "paginaFinal" => "1069" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "M.J. Pencina" 1 => "R.B. D’Agostino Sr." 2 => "R.B. D’Agostino Jr." 3 => "R.S. Vasan" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Stat Med" "fecha" => "2008" "volumen" => "27" "paginaInicial" => "157" "paginaFinal" => "172" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N.J. Stone" 1 => "J.G. Robinson" 2 => "A.H. Lichtenstein" 3 => "C.N. Bairey Merz" 4 => "C.B. Blum" 5 => "R.H. Eckel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/01.cir.0000437738.63853.7a" "Revista" => array:7 [ "tituloSerie" => "Circulation" "fecha" => "2014" "volumen" => "129" "numero" => "suppl 2" "paginaInicial" => "S1" "paginaFinal" => "S45" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24222016" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluation of the performance of survival analysis models: discrimination and calibration measures" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "R.B. D’Agostino" 1 => "N. Byung-Ho" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Handb Stat" "fecha" => "2004" "volumen" => "23" "paginaInicial" => "1" "paginaFinal" => "25" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Net reclassification indices for evaluating risk prediction instruments: a critical review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "K.F. Kerr" 1 => "Z. Wang" 2 => "H. Janes" 3 => "R.L. McClelland" 4 => "B.M. Psaty" 5 => "M.S. Pepe" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/EDE.0000000000000018" "Revista" => array:6 [ "tituloSerie" => "Epidemiology" "fecha" => "2014" "volumen" => "25" "paginaInicial" => "114" "paginaFinal" => "121" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24240655" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Calibration of prognostic risk scores" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B.V. Calster" 1 => "E.W. Steyerberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/9781118445112.stat08078" "LibroEditado" => array:3 [ "editores" => "N.Balakrishnan, T.Colton, B.Everitt, W.Piegorsch, F.Ruggeri, J.L.Teugels" "titulo" => "Wiley StatsRef: statistics reference online" "serieFecha" => "2018" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Verification of forecasts expressed in terms of probability" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "G.W. Brier" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Mon Weather Rev" "fecha" => "1950" "volumen" => "78" ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Evaluación de la validez de las funciones SCORE de bajo riesgo y calibrada para población española en las cohortes FRESCO" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.M. Baena-Diez" 1 => "I. Subirana" 2 => "R. Ramos" 3 => "A. Gómez de la Cámara" 4 => "R. Elosua" 5 => "J. Vila" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rec.2017.03.030" "Revista" => array:6 [ "tituloSerie" => "Rev Esp Cardiol" "fecha" => "2018" "volumen" => "71" "paginaInicial" => "274" "paginaFinal" => "282" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28566245" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Validación del índice SCORE y el SCORE para personas mayores en la cohorte de riesgo de enfermedad cardiovascular en Castilla y León" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A.T. Vega Alonso" 1 => "A. Ordax Díez" 2 => "J.E. Lozano Alonso" 3 => "R. Álamo Sanz" 4 => "S. Lleras Muñoz" 5 => "P. Palomar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.hipert.2019.02.002" "Revista" => array:6 [ "tituloSerie" => "Hipertens Riesgo Vasc" "fecha" => "2019" "volumen" => "36" "paginaInicial" => "184" "paginaFinal" => "192" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30926254" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The pooled cohort equations 3 years on: building a stronger foundation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "P.M. Ridker" 1 => "N.R. Cook" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/CIRCULATIONAHA.116.024246" "Revista" => array:6 [ "tituloSerie" => "Circulation" "fecha" => "2016" "volumen" => "134" "paginaInicial" => "1789" "paginaFinal" => "1791" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27920070" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Clinical implications of revised pooled cohort equations for estimating atherosclerotic cardiovascular disease risk" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "S. Yadlowsky" 1 => "R.A. Hayward" 2 => "J.B. Sussman" 3 => "R.L. McClelland" 4 => "Y.-I. Min" 5 => "S. Basu" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.7326/M17-3011" "Revista" => array:6 [ "tituloSerie" => "Ann Intern Med" "fecha" => "2018" "volumen" => "169" "paginaInicial" => "20" "paginaFinal" => "29" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29868850" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Performance of the Framingham risk models and pooled cohort equations for predicting 10-year risk of cardiovascular disease: a systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.A. Damen" 1 => "R. Pajouheshnia" 2 => "P. Heus" 3 => "K.G.M. Moons" 4 => "J.B. Reitsma" 5 => "R.J.P.M. Scholten" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12916-019-1340-7" "Revista" => array:5 [ "tituloSerie" => "BMC Med" "fecha" => "2019" "volumen" => "17" "paginaInicial" => "109" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31189462" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cardiovascular risk prediction models for women in the general population: a systematic review" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.J. Baart" 1 => "V. Dam" 2 => "L.J.J. Scheres" 3 => "J.A.A.G. Damen" 4 => "R. Spijker" 5 => "E. Schuit" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0210329" "Revista" => array:4 [ "tituloSerie" => "PLoS One" "fecha" => "2019" "volumen" => "14" "paginaInicial" => "e0210329" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimación del riesgo coronario en España mediante la ecuación de Framingham calibrada" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Marrugat" 1 => "P. Solanas" 2 => "R. D’Agostino" 3 => "L. Sullivan" 4 => "J. Ordovas" 5 => "F. Cordón" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/s0300-8932(03)76861-4" "Revista" => array:6 [ "tituloSerie" => "Rev Esp Cardiol" "fecha" => "2003" "volumen" => "56" "paginaInicial" => "253" "paginaFinal" => "261" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12622955" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Machine learning to predict cardiovascular risk" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.A. Quesada" 1 => "A. Lopez-Pineda" 2 => "V.F. Gil-Guillén" 3 => "R. Durazo-Arvizu" 4 => "D. Orozco-Beltrán" 5 => "A. López-Domenech" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ijcp.13389" "Revista" => array:3 [ "tituloSerie" => "Int J Clin Pract" "fecha" => "2019" "volumen" => "73" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Estimación del riesgo cardiovascular de por vida (IBERLIFERISK): una herramienta nueva en prevención primaria de las enfermedades cardiovasculares" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Brotons" 1 => "I. Moral" 2 => "D. Fernández" 3 => "M. Puig" 4 => "E. Calvo Bonacho" 5 => "P. Martínez Muñoz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.rec.2018.05.028" "Revista" => array:6 [ "tituloSerie" => "Rev Esp Cardiol" "fecha" => "2019" "volumen" => "72" "paginaInicial" => "562" "paginaFinal" => "568" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30097396" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "SCORE and CONOR investigators. Cardiovascular risk estimation in older persons: SCORE O.P." "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.T. Cooney" 1 => "R. Selmer" 2 => "A. Lindman" 3 => "A. Tverdal" 4 => "A. Menotti" 5 => "T. Thomsen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1177/2047487315588390" "Revista" => array:5 [ "tituloSerie" => "Eur J Prev Cardiol" "fecha" => "2016" "volumen" => "23" "paginaInicial" => "1093" "paginaFinal" => "1103" ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Assessment of the new SCORE OP cardiovascular risk charts in patients older than 65 years" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "C. Brotons" 1 => "I. Moral" 2 => "D. Fernández" 3 => "L. Cuixart" 4 => "A. Soteras" 5 => "M. Puig" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Esp Cardiol (Engl Ed)" "fecha" => "2016" "volumen" => "69" "paginaInicial" => "981" "paginaFinal" => "983" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/22548874/0000022100000010/v1_202111270653/S2254887421001053/v1_202111270653/en/main.assets" "Apartado" => array:4 [ "identificador" => "1901" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/22548874/0000022100000010/v1_202111270653/S2254887421001053/v1_202111270653/en/main.pdf?idApp=WRCEE&text.app=https://www.revclinesp.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2254887421001053?idApp=WRCEE" ]